
The ability to forward packets on the Internet is highly in-
tertwined with the availability and robustness of the Do-
main Name System (DNS) infrastructure. Unfortunately,
the DNS suffers from a wide variety of problems arising
from implementation errors, including vulnerabilities, bogus
queries, and proneness to attack. In this work, we present a
preliminary design and early prototype implementation of a
system that leverages diversified replication to increase toler-
ance of DNS to implementation errors. Our design leverages
software diversity by running multiple redundant copies of
software in parallel, and leverages data diversity by send-
ing redundant requests to multiple servers. Using traces of
DNS queries, we demonstrate our design can keep up with
the loads of a large university’s DNS traffic, while improving
resilience of DNS.

The Domain Name System (DNS) is a hierarchical sys-
tem for mapping hostnames (e.g., www.illinois.edu) to IP
addresses (e.g., 128.174.4.87). The DNS is a ubiquitous and
highly crucial part of the Internet’s infrastructure. Avail-
ability of the Internet’s most popular services, such as the
World Wide Web and email rely almost completely on DNS
in order to provide their functionality. Unfortunately, the
DNS suffers from a wide variety of problems, including per-
formance issues [9,17], high loads [11,27], proneness to fail-
ure [25], and vulnerabilities [7]. Due to the propensity of
applications and services that share fate with DNS, these
problems can bring significant harm to the Internet’s avail-
ability.
Much DNS research focuses on dealing with fail-stop er-

rors in DNS. Techniques tomore efficiently cache results [17],
to cooperatively perform lookups [23, 24], to localize and
troubleshoot DNS outages [22], have made great strides to-
wards improving DNS availability. However, as fail-stop er-
rors are reduced by these techniques, Byzantine errors be-
come a larger bottleneck in achieving availability. Unlike

fail-stop failures, where a system stops when it encounters
an error, Byzantine errors include the more arbitrary class
of faults where a system can violate protocol. For exam-
ple, software errors in DNS implementations lead to bogus
queries [27] and vulnerabilities, which can be exploited by
attackers to gain access to and control DNS servers. These
problems are particularly serious for DNS – while the root
of the DNS hierarchy is highly physically redundant to avoid
hardware failures, it is not software redundant, and hence
multiple servers can be taken down with the same attack.
For example, while there are 13 geographically distributed
DNS root clusters, each comprised of hundreds of servers,
they only run two distinct DNS software implementations:
BIND and NSD (see [8] and references therein). While co-
ordinated attacks to DoS these servers are hard, the fact
these servers may share vulnerabilities makes these attacks
simpler. Not as much work has been done in dealing with
such problems in the context of DNS.

In this paper, we revisit the classic idea of using diverse
replication to improve system availability. These techniques
have been used to build a wide variety of robust software,
especially in the context of operating systems and runtime
environments [10, 12, 13, 18, 19, 28]. Several recent systems
have also been proposed to decrease costs of replication, by
skipping redundant computations [30], and by eliminating
storage of redundant states [16]. However, to the best of
our knowledge, such techniques have not been widely in-
vestigated in improving resilience of DNS. Applying these
techniques in DNS presents new challenges. For example,
the DNS relies on distributed operations and hence some
way to coordinate responses across the wide area is required.
Moreover, the DNS relies on caching and hence a faulty re-
sponse may remain resident in the system for long periods
of time.

In this paper we present DR-DNS, a design and early
prototype DNS service that leverages diverse replication to
mask Byzantine errors. In particular, we design and im-
plement a DNS hypervisor, which allows multiple diverse
replicas of DNS software to simultaneously execute, with
the idea being that if one replica crashes or generates a
faulty output, the other replicas will remain available to
drive execution. To reduce the need to implement new code,
our prototype leverages the several already-existing diverse
open-source DNS implementations. Our hypervisor main-
tains isolation across running instances, so software errors do
not affect other instances. It uses a simple voting procedure
to select the majority result across instances, and includes a
cache to offset the use of redundant queries. Voting is per-



formed in the inbound direction, to protect end-hosts from
errors in local implementations or faulty responses returned
by servers higher up in the DNS hierarchy. As our voting
mechanism selects the majority result, it is able to protect
end-hosts from t faulty replicas if we run 2t+1 diverse DNS
software replicas side-by-side.

Roadmap: To motivate our approach, we start by sur-
veying common problems in DNS, existing work to address
them, as well as performing our own characterization study
of errors in open-source DNS software (Section 2). We next
present a design that leverages diverse replication to miti-
gate software errors in DNS (Section 3). We then describe
our prototype implementation (Section 4), and characterize
its performance by replaying DNS query traces (Section 5).
We then consider an extension of our design that leverages
existing diversity in the current DNS hierarchy to improve
resilience, and measure the ability of this approach in the
wide-area Internet (Section 6). Next, we consider Content
Distribution Networks and their effects on DR-DNS (Sec-
tion 6.3). We finally conclude with a brief discussion of
related work (Section 7) and future research directions (Sec-
tion 8).

In this section, wemake several observations thatmotivate
our design. First, we survey the literature to enumerate
several kinds of Byzantine faults that have been observed in
the DNS infrastructure. Next, we study several alternatives
towards achieving diversity across replicas. Finally, we study
the costs involved in running diverse replicas.

Errors in DNS software: The highly-redundant and
overprovisioned nature of the DNS makes it very resilient to
physical failures. However, the DNS suffers from a variety of
software errors that introduce correctness issues. For exam-
ple, Wessels et al. [27] found large numbers of bogus queries
reaching DNS root servers. In addition, some DNS imple-
mentation bugs are vulnerabilities, which can be exploited
by attackers to compromise the DNS server [7] and corrupt
DNS operations. While possibly more rare than physical
failures, incorrect behavior is potentially much more seri-
ous, as faulty responses can be cached for long periods of
time, and since a single faulty DNS server may send incor-
rect results to many clients (e.g., a single DNS root name
server services on average 152 million queries per hour, to
382 thousand unique hosts [27]). With increasing deploy-
ments of physical redundancy and fast-failover technologies,
software errors and vulnerabilities stand to make up an in-
creasingly large source of DNS problems in the future.

Approaches to achieving diversity: Our approach
leverages diverse replicas to recover from bugs. There are
a wide variety of ways diversity could be achieved, and our
architecture is amenable to several alternatives: the execu-
tion environment could be made different for each instance
(e.g., randomizing layout in memory [10]), the data/inputs
to each instance could be manipulated (e.g., by ordering
queries differently for each server), and the software itself
could be diverse (e.g., running different DNS implementa-
tions). For simplicity, in this paper we focus on software
diversity. Software diversity has been widely used in other
areas of computing, as diverse instances of software typically
fail on different inputs [10,12–14,18,28].
To estimate the level of diversity achieved across different

DNS implementations, we performed static code analysis of
nine popular DNS implementations (listed in the column
headings of Figure 1b). First, to evaluate code diversity, we
usedMOSS, a tool used by a number of universities to detect
student plagiarism of programming assignments. We used
MOSS to gauge the degree to which code is shared across
DNS implementations and versions. Second, to evaluate
fault diversity, we used Coverity Prevent, an analyzer that
detects programming errors in source code. We used Cover-
ity to measure how long bugs lasted across different versions
of the same software. We did this by manually investigating
each bug reported by Coverity Prevent, and checking to see
if the bug existed in other versions of the same software. Our
results are shown in Figure 1. We found that most DNS im-
plementations are diverse, with no code bases sharing more
than one bug, and only one pair of code bases achieving a
MOSS score of greater than 2% (Figure 1b). Operators of
our system may wish to avoid running instances that achieve
a high MOSS score, as bugs/vulnerabilities may overlap
more often in implementations that share code. Also, we
found that while implementation errors can persist for long
periods across different versions of code, code after a major
rewrite (e.g., BIND versions 8.4.7 and 9.0.0 in Figure 1a)
tended to have different bugs. Hence, operators of our sys-
tem may wish to run multiple versions of the same software
in parallel to recover from bugs, but only versions that differ
substantially (e.g., major versions).

Figure 2: Design of DNS hypervisor.

In this section we describe the details of the design of
our DNS service, which uses diverse replication to improve
resilience to Byzantine failures. Our overall architecture is
shown in Figure 2. Our design runs multiple replicas of
DNS software atop a DNS hypervisor. The DNS hypervisor
is responsible for mediating inputs and outputs of the DNS
replicas, to make them collectively operate like a single DNS
server. Our design interacts with other DNS servers using
the standard DNS protocol to simplify deployment. The
hypervisor is also responsible for masking bugs by using a
simple voting procedure: if one replica produces an incorrect
result due to a bug, or due to the fact that it is compromised
by an attacker, or if it crashes, and if the instances are suf-
ficiently diverse, then it is likely that another replica will
remain available to drive execution. There are a few design
choices related to DNS replicas that may affect the DR-DNS
operations.

1. How many replicas to run (r)? To improve resilience
to faults, the hypervisor can spawn additional replicas. In-
creasing the number of replicas can improve resilience, but



Figure 1: Number of overlapping bugs across code bases, with MOSS scores given in parenthesis, for (a)
different versions of BIND (b) latest versions of different code bases. We find a high correlation between
MOSS score and bug overlap.

incurs additional run time overheads (CPU, memory usage).
In addition, there may be diminishing returns after a point.
For example, we were only able to locate nine diverse copies
of DNS software, and hence running more than that num-
ber of copies would not attain benefits from increased soft-
ware diversity (though data diversity techniques may be ap-
plied, by manipulating inputs and execution environment of
multiple replicas of the same software code base [10, 13]).
Similarly, the hypervisor can kill or restart a misbehaving
replica. A replica is misbehaving if it regularly produces
different output than the majority result or if it crashes. In
this case, the hypervisor first restarts the replica and if the
problem persists, then the replica is killed and a new replica
is spawned. This new replica may have different software or
configuration.

2. How to select software that run in replicas? In or-
der to increase the fault tolerance, DR-DNS administrators
should choose diverse DNS implementations to run in repli-
cas. For instance, using the same software with minor ver-
sion changes (e.g., BIND 9.5.0 and BIND 9.6.0) in replicas
should be avoided since those two versions will be likely to
have common bugs. Instead, different software implementa-
tions (e.g., BIND and PowerDNS) or the same software im-
plementation with major version changes (e.g., BIND 8.4.7
and BIND 9.6.0) are more suitable to run in replicas.

3. How to configure the replicas? Each DNS replica is in-
dependently responsible for returning a result for the query,
though due to implementation and configuration differences,
each replica may use a different procedure to achieve the
result. For example, some replicas may perform iterative
queries, while others perform recursive queries. To deter-
mine the result to send to the client, the DNS replicas may
either recursively forward the request towards the DNS root,

or may respond immediately (if they are authoritative, or
have the response for the query cached). Furthermore, dif-
ferent cache sizes can affect the response times of replicas.
For instance, a query can be cached in a replica, whereas an-
other replica with a smaller cache may have to do a lookup
for the same query.

4. How to select upstream DNS servers for replicas? Up-
stream DNS servers should be selected such that the possi-
bility of propagating an incorrect result to the client is min-
imized. For instance, if all replicas use the same upstream
DNS server to resolve the queries and if this upstream DNS
server produces an incorrect result, then this incorrect result
will be propagated to the end-host. However, one can eas-
ily configure replicas to select diverse upstream DNS servers
that in result protects the end-users from misbehaving up-
stream DNS servers. External replication and path diversity
techniques are further discussed in Section 6.

The hypervisor has a more complex design than repli-
cas and it includes multiple modules: Multicast, Voter and
Cache. Upon receiving an incoming query from the end-
host, the hypervisor follows multiple steps. First, the Multi-
cast module replicates the incoming query from the end-host
and forwards the replicated queries to DNS replicas. Next,
the Voter module waits for a set of answers received from the
DNS replicas and then it generates the best answer depend-
ing on the voting scheme. For instance, a simple majority
voting scheme selects the most common answer and returns
it to the end-host. Finally, the answer is stored in the cache.
The Cache module is responsible for storing the answers to
common queries to reduce the response time. If the cache
already has the answer to the incoming query of the end-
host, then DR-DNS directly replies the answer without any
further processing.



To mediate between the outputs of replicas, we use a sim-
ple voting scheme, which selects the majority result to send
to downstream DNS/end-host clients. We propose a single
voting procedure with several tunable parameters:

How long to wait (t, k)? Each replica in the system may
take different amounts of time to respond to a request. For
example, a replica may require additional processing time:
it may be due to a less-efficient implementation, because it
does not have the response cached and must perform a re-
mote lookup, or because the replica is frozen/locked-up and
not responding. To avoid waiting for an arbitrary amount
of time, the voter only waits for a maximum amount of time
t before continuing, and is allowed to return the majority
early when k replicas return their responses.
Even though DR-DNS uses the simple majority voting

scheme as default, a different voting scheme can be selected
by the administrator. There are three main voting schemes
DR-DNS currently supports: Simple Majority Voting, Weighted
Majority Voting, and Rank Preference Majority Voting. Note
that a DNS answer may include multiple ordered IP ad-
dresses. The end-host usually tries to communicate with
the first IP address in the answer. The second IP address is
used only if the first one fails to reply. Similarly the third
address is used if the first two fails, and so on.

Simple Majority Voting: In this voting scheme, the ranking
of IP addresses in a given DNS answer is ignored. IP ad-
dresses seen in majority of the replica answers win regardless
of the ordering in replica answers. The final answer, how-
ever, orders the majority IP addresses according to their
final counts. This voting scheme is a simplified version of
the weighted majority voting scheme with all weights being
equal to one.

Weighted Majority Voting: This voting scheme is based
on the simple majority voting. The main difference of this
voting scheme is that replicas have weights affecting the fi-
nal result proportional to their weights. Replicas with more
weights contribute more to the final result. Weights can be
determined dynamically, or they can be assigned by the ad-
ministrator statically in the configuration file. A dynamic
weight of a replica is increased if the replica answer and the
final answer has at least one common IP address. Otherwise,
the replica is likely to have an incorrect result and its weight
is decreased. In the static approach, the administrator may
prefer to assign static weights to replicas. For instance, one
may want to assign a larger weight to the replica using latest
version of the same software compared to replicas using older
versions. Similarly, an administrator may trust replicas us-
ing well-known software such as BIND more than replicas
using other DNS software. The dynamic approach can ad-
just to transient buggy states much better than the static
approach, but it includes an additional performance cost.
Finally, a hybrid approach is also possible where each replica
has two weights: a static and a dynamic weight. As a result,
static weight is assigned by the administrator, whereas the
dynamic weight is adjusted as DR-DNS processes queries.

Rank Preference Majority Voting: This voting scheme is
also based on the simple majority voting. In the simplest
rank preference voting, the IP addresses are weighted based
on their ordering in the DNS answer. For instance, the first
IP address in a replica answer is weighted more than the
second IP address in the same answer. The final answer is
generated by applying simple majority voting on the cumu-

lative weights of IP addresses.

To better understand the practical challenges of our de-
sign, we built a prototype implementation in Java, which we
refer to as“Diverse Replica DNS”(DR-DNS). We had several
goals for the prototype. First, we would like to ensure that
the multiple diverse replicas are isolated, so that incorrect
behavior/crashes of one replica do not affect performance of
the other replicas. To achieve this, the DNS hypervisor runs
each instance within its own process, and uses socket com-
munication to interact with them. Second, we wanted to
eliminate the need to modify the code of existing DNS soft-
ware implementations running within our prototype. To do
this, our hypervisor’s voter acts like a DNS proxy, by main-
taining a separate communication with each running replica
and mediating across their outputs. In addition, we wanted
our design to be as simple as possible, to avoid introducing
potential for additional bugs and vulnerabilities that may
lead to compromising the hypervisor. To deal with this, we
focused on only implementing a small set of basic function-
ality in the hypervisor, relying on the replicas to perform
DNS-specific logic. Our implementation consisted of 2,391
lines of code, with 1,700 spent on DNS packet processing,
378 lines on hypervisor logic including caching and voting,
and the remaining 313 lines on socket communication. (by
comparison, BIND has 409,045 lines of code, and the other
code bases had 28,977-114,583 lines of code). Finally, our
design should avoid introducing excessive additional traffic
into the DNS system, and respond quickly to requests. To
achieve this, our design incorporates a simple cache, which
is checked before sending requests to the replicas. Our cache
implementation uses the Least Recently Used (LRU) evic-
tion policy.

On startup, our implementation reads a short configura-
tion file describing the location of DNS software packages on
disk, spawns a separate process corresponding to each, and
starts up a software instance (replica) within each process.
Each of these software packages must be configured to start
up and serve requests on a different port1. The hypervisor
then binds to port 53 and begins listening for incoming DNS
queries. Upon receipt of a query, the hypervisor checks to
see if the query’s result is present in its cache. If present,
the hypervisor responds immediately with the result. Other-
wise, it forwards a copy of the query to each of the replicas.
The hypervisor then waits for the responses, and selects the
majority result to send to the client. To avoid waiting arbi-
trarily long for frozen/deadlocked/slow replicas to respond,
the hypervisor waits no longer than a timeout (t) for a re-
sponse. Note each replica’s approach to processing the query
may be different as well, increasing potential for diversity.
For example, one replica may decide to iteratively process
the query, while others may perform recursive lookups. In
addition, different implementations may perform different
caching strategies or have different cache sizes, and hence
one copy may be able to satisfy the request from its cache
while another copy may require a remote lookup. Regard-
less, the responses are processed by the hypervisor’s voter
to agree on a common answer before returning the result to
the client.

1As part of future work, we are investigating use of virtual
machine technologies to eliminate this requirement.



Our implementation has three main features to achieve
high scalability, fast response and correctness. First, DR-
DNS is implemented using threads with a thread pool. Upon
start up, DR-DNS generates a thread pool including the
threads that are ready to handle incoming queries. When-
ever a query is received, it is assigned to a worker thread
and run in parallel to other queries. The worker is respon-
sible for keeping all the state information about the query
including the replica answers. After the answer to the query
is replied, the worker thread returns to the pool and waits
for a new query. High scalability in our implementation
can be reached by increasing the size of the thread pool as
the load on the server increases. Second, DR-DNS is imple-
mented in an event-driven architecture. Themain advantage
of the event-driven architecture is that it provides flexibility
to process an event without any delay. In our implementa-
tion, almost all events related to replicas are time critical and
need to be processed quickly to achieve fast response time.
Finally, our hypervisor implementation consistently checks
replicas for possible misbehavior. The replica answers are
regularly checked against the majority result to notice any
misbehavior to achieve high correctness.

Setup: To study performance under heavy loads, we re-
played traces of DNS requests collected at a large university
(the University of Illinois at Urbana-Champaign (UIUC),
which has roughly 40,000 students) against our implemen-
tation (DR-DNS) running on a single-core 2.5 GHz Pen-
tium 4. The trace contains two days of traffic, correspond-
ing to 1.7 million requests. Since some of the DNS soft-
ware implementations we use make use of caches, we re-
play 5 minutes worth of trace before collecting results, as
we found this amount of time eliminated any measurable
cold start effects. We configure DR-DNS to run four di-
verse DNS implementations, namely: BIND version 9.5.0,
PowerDNS version 3.17, Unbound version 1.02, and djbdns
version 1.05. We run each replica with a default cache size
of 32MB. Some implementations resolve requests iteratively,
while others resolve recursively, and we do not modify this
default behavior. Since modeling bug behavior is in itself
an extremely hard research topic, for simplicity we consider
a simple two-state model where a DNS server can be ei-
ther in a faulty or non-faulty state. When faulty, all its re-
sponses to requests are incorrect, and the interarrival times
between faulty states is sampled from a Poisson distribution
with mean rate λnf = 100000 milliseconds. The duration
of faulty states is also sampled from a Poisson distribution
with mean rate λf = μ ∗ λnf . While for traditional failures
μ is on the order of 0.0005 [20], to stress test our system
under more frequent bugs (where our system is expected to
perform more poorly), we consider of μ = 0.01, μ = 0.003,
and μ = 0.001.

Metrics: There are several benefits associated with our
approach. For example, runningmultiple copies can improve
resilience to Byzantine faults. To evaluate this, we measure
the fault rate as the fraction of time when a DNS server is
generating an incorrect output. At the same time, there are
also several costs. For example, it may slow response time,
as we must wait for multiple replicas to finish computing
their results. To evaluate this, we measure the processing
delay of a request through our system. In this section, we

Figure 3: Effect of μ on fault rate, with t fixed at

4000ms.

quantify the benefits (Section 5.1) and costs (Section 5.2) of
our design.

Figure 4: Effect of timeout on fault rate, with μ fixed

at 0.001.

The primary benefit of our design is in improving resilience
to Byzantine behavior. However, the precise amount of ben-
efit achieved is a function of several factors, including how
often Byzantine behavior occurs, how long it tends to last,
the level of diversity achieved across replicas, etc. Here, we
evaluate the amount of benefit gained from diverse replica-
tion under several different workloads.

First, using λf and λnf we measured the fraction of buggy
responses returned to clients (i.e., the fault rate). In partic-
ular, we vary μ = λf/λnf . For simplicity, since performance
of DR-DNS is a function primarily of the ratio of these two
values, we can measure performance as a function of this ra-
tio. We found that DR-DNS reduces fault rate by multiple
orders of magnitude when run with μ = 0.0005. To evaluate
performance under more stressful conditions, we plot in Fig-
ure 3 performance for higher ratios. We find that even under
these more stressful conditions, DR-DNS reduces fault rate
by an order of magnitude. We find a similar result when we
vary the timeout value t, as shown in Figure 4.
Our system also can leverage spare computational capac-

ity to improve resilience further. It does this by running
additional replicas. We evaluate the effect of the number
of replicas on fault rate in Figures 3 and 4. As expected,
we find that increasing the number of replicas reduces fault
rate. For example, when μ = 0.001 and t = 1000, running
one additional replica (increasing r = 3 to r = 4) reduces



Figure 5: Amount of memory required to achieve de-

sired hit rate.

Figure 6: Amount of delay required to process requests.

fault rate by a factor of eight.

First, DNS implementations are often configured with large
caches to reduce request traffic. Our system increases re-
quest traffic even further, as it runs multiple replicas, which
do not share their cache contents. To evaluate this, we mea-
sured the amount of memory required to achieve a certain
desired hit rate in Figure 5. Interestingly, we found that re-
ducing cache size to a third of its original size (which would
be necessary to run three replicas) did not substantially re-
duce hit rate. To offset this further, we implemented a shared
cache in DR-DNS’s DNS hypervisor. To improve resilience
to faulty results returned by replicas, DR-DNS’s cache peri-
odically evicts cached entries. While this increases hypervi-
sor complexity slightly (adds an additional 52 lines of code),
it maintains the same hit rate as a standalone DNS server.
Second, our design imposes additional delay on servicing

requests, as it must wait for the multiple replicas to ar-
rive at their result before proceeding. To evaluate this, we
measured the amount of time it took for a request to be
satisfied (the round trip time from a client machine back to
that originating client). Figure 6 plots the amount of time
to service a request. We compare a standalone DNS server
running BIND with DR-DNS running r = 3 copies (BIND,
PowerDNS, and djbdns). We find that BIND runs more
quickly than PowerDNS, and DR-DNS runs slightly more
slowly than PowerDNS. This is because in its default con-
figuration, DR-DNS runs at the speed of the slowest copy,
as it waits for all copies to respond before proceeding. To
mitigate this, we found that increasing the cache size can
offset any additional delays incurred by processing.

Figure 7: Effect of timeout on reducing delay.

Figure 8: Microbenchmarks showing most of delay is

spent waiting for replicas to reach consensus.

An alternate way to reduce delay is to vary t (to bound the
maximum amount of time the voter will wait for a replica to
respond) or k (to allow the voter to proceed when the first
k replicas finish processing). As one might expect, we found
that increasing k or increasing t both produce a similar ef-
fect: increasing them reduces fault rate, but increases delay.
However, we found that manipulating t provided a way to
bound worst-case delay (e.g., to make sure a request would
be serviced within a certain time bound), while manipulat-
ing k provided a worst-case resilience against bugs (e.g., to
make sure a response would be voted upon by at least k
replicas). Also, as shown in Figure 7, we found that mak-
ing t too small increased the number of dropped requests.
This happens because, if no responses from replicas are re-
ceived before the timeout, DR-DNS drops the request (we
also considered a scheme where we wait for at least one copy
to respond, and achieved a reduced drop rate at the expense
of increased delay).

To investigate the source of delays in DR-DNS, we per-
formed microbenchmarking. Here, we instrument DR-DNS
with timing code to measure how much time is spent han-
dling/parsing DNS packets, performing voting, checking the
local cache, and waiting for responses from remote DNS
servers. Figure 8 shows that the vast majority of request
processing time is spent on waiting for the replicas to finish
communicating with remote servers and to achieve consen-
sus. This motivates our use of k and t: since these parame-
ters control the amount of time required to achieve consen-
sus, they provide knobs that allow us to effectively control
delay (or to trade it off against fault rate).

Under heavy loads, we found that DR-DNS dropped a
slightly larger number of requests than a standalone DNS



server (0.31% vs. 0.1%). Under moderate and light loads,
we found DR-DNS dropped fewer requests than a standalone
DNS server (0.004% vs. 0.036%). This happens because
there is some small amount of loss between DR-DNS and
the remote root servers, and since like other schemes that
replicate queries [23], our design sends multiple copies of a
request, it can recover from some of these losses at the added
expense of additional packet overhead.

Our work so far has focused on internal replication – run-
ning multiple DNS replicas within a single host. However,
the distributed nature of the DNS hierarchy means that
there are often multiple remote DNS servers that can re-
spond to a request. This provides the opportunity for DR-
DNS to leverage external replication as well. Hence, in order
to increase the reliability of the whole DNS query resolution
process, we use the existing DNS hierarchy and redundancy
as another form of diversity. In particular, we extend the
DR-DNS design to allow its internal DNS replicas to send
queries to multiple diverse upstream DNS servers and ap-
ply voting for the final answer. Path diversity, the selection
of the diverse upstream DNS servers, can be considered as
leveraging diversity across upstream DNS servers. While
this approach presents some practical challenges, we present
results to indicate the benefits of maintaining and increasing
diversity in the existing DNS hierarchy. The rest of the sec-
tion is organized as follows. Section 6.1 provides the design
extensions of DR-DNS to support path diversity. Section 6.2
presents the benefits and costs of path diversity. Finally,
Section 6.3 discusses the path diversity in the existence of
CDNs and DNS load balancing.

We extend the DR-DNS design to leverage path diversity
in the DNS hierarchy. In the extended DR-DNS design each
internal DNS replica (1) sends replicated queries to multi-
ple diverse upstream DNS servers and (2) applies voting on
the received answers. Hence, we extended each internal DNS
replica with a replica hypervisor, i.e. a DNS hypervisor with-
out a cache. The DNS hypervisor already has a Multicast
module (MCast) to replicate the queries and Voter module
to apply majority voting on the received answers. In this
case, we disabled the caches of replica hypervisors since DNS
replicas include their own caches. Whenever a DNS replica
wants to send a query to upstream DNS servers, it simply
sends the query to its replica hypervisor. Then, the mul-
ticast module in the replica hypervisor replicates the query
and forwards copies to selected upstreamDNS servers. Upon
receiving answers, the voter module simply applies majority
voting on the answers and replies to its DNS replica with
the final answer.

The primary benefit of our design extension is in improv-
ing resilience to errors that can occur in any DNS servers
involved in the query resolution. However, the amount of ex-
act benefit gained depends on the level of diversity achieved
across upstream DNS servers. To increase the reliability of
DNS query resolution process, one needs to avoid sending
queries to upstream DNS servers that share software vul-
nerabilities. Hence, we select the upstream DNS servers
with either different software implementations (e.g., BIND

and PowerDNS) or the same software implementation with
major version changes (e.g., BIND 8.4.7 and BIND 9.6.0).
One can also select upstream DNS servers running different
operating systems (e.g., Windows or Linux).
To measure diversity of the existing DNS infrastructure,

we used two open-source fingerprinting tools: (1) fpdns, a
DNS software fingerprinting tool [5], and (2) nmap, an OS
fingerprinting tool [6]. fpdns is based on borderline DNS
protocol behavior. It benefits from the fact that some DNS
implementations do not offer the full set of features of DNS
protocol. Furthermore, some implementations offer extra
features outside the protocol set, and even some implemen-
tations do not conform to standards. Given these differences
among implementations, fpdns sends a series of borderline
queries and compares the responses against its database to
identify the vendor, product and version of the DNS soft-
ware on the remote server. The nmap tool, on the other
hand, contains a massive database of heuristics for identify-
ing different operating systems based on how they respond
to a selection of TCP/IP probes. It sends TCP packets to
the hosts with different packet sequences or packet contents
that produce known distinct behaviors associated with spe-
cific OS TCP/IP implementations.

First, we collected a list of 3,000 DNS servers from the
DNS root traces [4] on December 2008 and probed these
DNS servers to check their availability from a client within
the UIUC campus network. Then, we eliminated the non-
responding servers. Second, we identified the DNS software
and OS version of each available server with fpdns and nmap
tools. This gives us a list of available DNS servers with cor-
responding DNS software and OS versions. One can easily
select diverse upstream DNS servers from this list. However,
careless selection comes with major cost: increased delay
due to forwarding queries to distant upstream DNS servers
compared to closest local upstream DNS server. Hence, one
needs to select diverse upstream DNS servers that are close
to the given host to minimize the additional delay. Here, we
propose a simple selection heuristic: for a given host, we first
find the top k diverse DNS servers which have the longest
prefix matches with the host IP address. This results in k
available DNS servers topologically very close to the host.
Then, we use the King delay estimation methodology [15]
to order these DNS servers according to their computed dis-
tance from the host. For practical purposes, we have used
k = 5 in our experiments. Finally, to evaluate the additional
delay, we first collected a list of 1000 hosts from [3]. Then,
for each host in this list we measured the amount of extra
time needed to use multiple diverse upstream DNS servers.
Figures 9a (DNS software diversity) and 9b (OS diversity)
plot the amount of total time to service the queries as addi-
tional diverse upstream DNS servers are accessed.
The results show that BIND is the most common DNS

software among DNS servers we analyzed (69.8% BIND v9.x,
10% BIND v8.x). We also found that OS distribution among
DNS servers is more balanced: 54% Linux and 46% Win-
dows. Even though the software diversity among public DNS
servers should be improved, the results indicate that current
degree of diversity is sufficient for our reliability purposes.
However, there is a delay cost in using multiple upstream
DNS servers since we have to wait for all answers of the up-
stream DNS servers. This extra delay is shown in Figures
9a and 9b. We found that with an average of 26ms delay
increase, we can use additional upstream DNS servers with



(a) (b) (c)

Figure 9: (a) Achieving diversity may require sending requests to more distant (higher-latency) DNS servers.
Effect of DNS software diversity on latency inflation. (b) Effect of OS software diversity on latency inflation.
(c) Number of failures that can be masked with N , the number of upstream DNS servers.

diverse DNS software to increase the reliability. Similarly,
upstream DNS servers with diverse OS software can be used
with an average of 19ms extra delay. We found that we can
use OS diversity with a smaller overhead since OS distri-
bution among DNS servers is more balanced. We conclude
that DR-DNS extensions to use path diversity improves the
reliability and protects the end users from software bugs and
failures of upstream DNS servers. Moreover, the average de-
lay cost is small and can be tolerated by the end users. Fi-
nally, our design increases the traffic load on upstream DNS
servers, and this component of DR-DNS may be disabled
if needed. However, we believe that the increasing sever-
ity of DNS vulnerabilities and software errors, coupled with
the reduced costs of multicore technologies making compu-
tational and processing capabilities cheaper, will make this
a worthwhile tradeoff.

Content distribution networks (CDNs) deliver content to
end-hosts from geographically distributed servers using the
following procedure. First, a content provider provide the
content to a CDN. Next, the CDN replicates the content
in replicas, multiple geographically distributed servers. Fi-
nally, an end-host requesting the content is redirected to
one of the replicas instead of the original content provider.
There are numerous advantages of CDNs: scalability, load
balancing, high performance, etc. Some CDNs useDNS redi-
rection technique to redirect the end-hosts to the best avail-
able CDN server for content delivery. Therefore, the CDN
replica providing the content to the end-host may change
dynamically depending on a few parameters including the
geographic location of the end-host, network conditions, the
time of the day and the load on the CDN replicas [1, 26].
As a result, a specific end-host may receive different DNS
answers to the same query in subsequent requests. Hence,
one might ask the question: How does the existence of CDNs
affect DR-DNS?
DR-DNS appliesmajority voting tomultiple DNS answers

where each DNS answer includes a set of ordered IP ad-
dresses. In the existence of CDNs, DNS answers include IP
addresses of CDN replicas which can deliver the content effi-
ciently. Therefore, two DNS answers to the same query may
not have any common IP addresses. This results in no win-
ning IP set after the majority voting in DR-DNS. However,
in this case DR-DNS cannot make any final decision and
simply returns all IP addresses to the end-host. As a rule,
DR-DNS returns all IP addresses from the DNS answers if

it fails to find the majority set. Note that this approach
still works correctly since any of the returned IP addresses
will direct the client to a valid CDN server, and DR-DNS
ensures that one of those IP addresses is always returned.
However, DR-DNS heavily relies on the results of majority
voting to improve the reliability. To evaluate how CDNs
affect the reliability of DR-DNS, we measured the variation
in DNS answers from Akamai, a well known CDN.

CDNs use DNS redirection technique to redirect the end-
hosts to the best available replicas. In DNS redirection, the
end-host’s query is handled by the DNS server authoritative
for the requested domain, which is controlled by the CDN to
return IP addresses of CDN replicas from which the content
can be delivered most efficiently. CDN replicas for content
delivery is chosen dynamically depending on the location of
the end-host. For instance, an end-host located in New York
may be more likely to be redirected to a replica in New Jer-
sey rather than a replica in Seattle. Hence, in the existence
of CDNs, DNS answers heavily depend on the location of
the upstream DNS server. Two geographically distant up-
stream DNS servers will be likely to return different IP sets
in the DNS answers to the same query. However, DR-DNS
relies on the majority voting that elevates the common IP
addresses in the returned DNS answers to improve reliabil-
ity. To understand how often DR-DNS cannot do majority
voting in the existence of CDNs, we carried out the fol-
lowing experiment. First, we selected the top 1000 most
popular worldwide domains from [2] to use as queries since
many content providers are in this list. Even though using
top domains as queries results in biased measurements, it
helps us to get an upper bound for the worst case. Next,
for each query we randomly selected N = 3, 5, 7 upstream
DNS servers from (1) the same state (Louisiana), (2) same
country (USA) and (3) different countries. For the third ex-
periment, we selected the countries from distinct continents
(USA, Brazil, UK, Turkey, Japan, Australia, South Africa)
to again evaluate the worst case. Table 1 shows the ratio of
top domain queries where DR-DNS cannot find the majority
set.

We found that CDNs affect the majority voting more if
the selected upstream DNS servers are geographically dis-
tributed around the world. The results also show that CDN
effects can be minimized in DR-DNS by selecting upstream
DNS servers from a smaller region. For instance, select-
ing upstream DNS servers from the same state guarantees



N = 3 N = 5 N = 7
State (Louisiana) 0.3% 0.7% 0.8%
Country (USA) 1.0% 2.0% 1.7%

World 1.6% 2.4% 2.0%

Table 1: The ratio of top domain queries where ma-
jority voting fails. N is the number of upstream
DNS servers.

that DR-DNS improves the reliability of more than 99% of
the queries. The main conclusion is that one should choose
upstream DNS servers close to end-hosts for better reliabil-
ity. Moreover, the heuristic that we developed in the previ-
ous section for path diversity chooses diverse upstream DNS
servers close to the end-host, so DR-DNS already minimizes
CDN effects.

N = 3 N = 5 N = 7
USA - Top Domains 1.0% 2.0% 1.7%
USA - UIUC Trace 0.6% 0.9% 0.7%

Table 2: The ratio of top domain queries that major-
ity voting fails, for USA-located hosts. The UIUC
trace contains less queries to CDN clients. N is the
number of upstream DNS servers.

Next, to obtain more realistic results, we repeated the
same experiment with 1000 queries randomly selected from
the UIUC primary DNS server trace. Table 2 shows that
DR-DNS is less affected from CDNs in the UIUC trace.

Next, we studied how the control overhead and the re-
silience in DR-DNS changes as we increase the number of
upstream DNS servers. We found that control overhead in-
creased linearly with the number of simultaneous requests,
as expected. To evaluate the resilience, we performed the fol-
lowing experiment: we repeatedly send a randomDNS query
to multiple servers, and look at their answers. In some cases,
the IP addresses in DNS answers may differ due to CDNs.
If the majority voting fails, then DR-DNS doesn’t improve
the reliability. To evaluate performance, we then count these
cases. Majority voting finds a winning IP set if more than
half of the upstream DNS servers agree on at least one IP
address. Let N be the number of upstream DNS servers DR-
DNS queries simultaneously. Then, the minimum number of
upstream servers that need to agree for the majority result
is Nmin = �N

2
�+ 1. For a given query, let C be the number

of upstream DNS servers that agrees on the winning IP set
(majority voting succeeds). Since there is a winning IP set,
C >= Nmin. Now, we define the threshold T = C − Nmin

to measure how many extra upstream DNS servers agreed
on the majority set. Note that if T = 0, then the major-
ity result is agreed upon by Nmin number of upstream DNS
servers. In this case, if one server that contributes to the
majority result becomes buggy, then majority voting fails.
However, if T = N − Nmin is at maximum value (all up-
stream DNS servers agree on the winning IP set), then to
fail in majority voting, N −Nmin+1 upstream DNS servers
need to become buggy simultaneously. Hence, to evaluate
resilience, we measure the threshold T for every query. The
reliability of the majority answer is directly proportional to
threshold value T . Figure 9c shows the increase in reliability

as we increase the number of upstream DNS servers.
Overall, we found that for most queries, DR-DNS enabled

with our external replication techniques could perform ma-
jority voting to mask the bug, thereby increasing reliability.
DR-DNS was unable to do majority voting for only 0.3% of
the top domain queries if three upstream DNS servers are
selected from the same state. While for these small number
of queries it does not mask the fault, it is important to note
that it performs no worse than a normal (uninstrumented)
baseline DNS system even in these cases. Finally, the reli-
ability of the majority answer can be increased by sending
queries to more upstream DNS servers.

DNS suffers from a wide variety of problems. Reliability
of DNS can be harmed through a number of ways. Physical
outages such as server failures or dropped lookup packets
may prevent request processing. The DNS also suffers from
performance issues, which can delay responses or increase
loads on servers [27]. DNS servers may be misconfigured,
which may lead to cyclic dependencies between zones, or
cause servers to respond incorrectly to requests [22]. Also,
implementation errors in DNS code can make servers prone
to attack, and can lead to faulty responses [7, 25].

Dealing with failures in DNS is certainly not a new prob-
lem. For example, DNS root zones are comprised of hun-
dreds of geographically distributed servers, and anycast ad-
dressing is used to direct requests to servers, reducing prone-
ness to physical failures. Redundant lookups and coopera-
tive caching can substantially reduce lookup latencies and
resilience to fail-stop failures [23,24]. Troubleshooting tools
that actively probe via monitoring points can detect large
classes of misconfigurations [22]. Our work does not aim
to address fail-stop failures, and instead we leverage these
previous techniques, which work well for such problems.

However, these techniques do not aim to improve resilience
to problems arising from implementation errors in DNS code.
A vulnerability in a single DNS root server affects hundreds
of thousands of unique hosts per hour of compromise [11,27],
and a single DNS name depends on 46 servers on average,
whose compromise can lead to domain hijacks [25]. The
DNS has experienced several recent high-profile implemen-
tation errors and vulnerabilities. As techniques dealing with
fail-stop failures become more widely deployed, we expect
that implementation errors may make up a larger source of
DNS outages. While there has been work on securing DNS
(e.g., DNSSEC), these techniques focus on authenticating
the source of DNS information and checking its integrity,
rather than masking incorrect lookup results. In this work,
we aim to address this problem at its root, by increasing the
software diversity of the DNS infrastructure.

Software diversity techniques have been used to prevent
attacks on large scale networks in multiple studies. It has
been shown that reliability of single-machine servers to soft-
ware bugs or attacks can be increased with diverse repli-
cation [13]. In another work, diverse replication is used to
protect large scale distributed systems from Internet catas-
trophes [18]. Similarly, to limit malicious nodes to compro-
mise its neighbors in the Internet, software diversity is used
to assign nodes diverse software packages [21]. In another
work, to increase the defense capabilities of a network, the
authors suggest increasing the diversity of nodes to make
the network more heterogeneous [29]. To the best of our



knowledge, our work is the first to directly address the root
cause of implementation errors in DNS software, via the use
of diverse replication. However, our work is only an early
first step in this direction, and we are currently investigating
a wider array of practical issues as part of future work.

Today’s DNS infrastructure is subject to implementation
errors, leading to vulnerabilities and buggy behavior. In
this work, we take an early step towards addressing these
problems with diverse replication. Our results show that
available DNS software packages have sufficient diversity in
code resulting in a minimal number of shared bugs. How-
ever, DNS software with minor version changes share most
of the code base resulting in less diversity. We have also
found that the number of bugs is not reduced in later ver-
sions of the same software since usually new functionality is
added to software introducing new bugs. We also find that
our system masks buggy behavior with diverse replication,
reducing the fault rate by an order of magnitude. Increasing
the number of replicas further decreases the fault rate. Our
results indicate that DR-DNS runs quickly enough to keep
up with the loads of a large university’s DNS queries. In
addition, DR-DNS can leverage redundancy in the current
DNS server hierarchy (replicated DNS servers, public DNS
servers, etc.). We can use this redundancy to select diverse
upstream DNS servers to protect the end-host from possible
errors existing in the upstream servers. Selecting a different
upstream DNS server may increase response time, but our
results show that a slight increase in response time enables a
significant improvement in reliability. CDNs and DNS-level
load balancing may result in DNS queries being resolved
to different sets of IP addresses, which can limit ability of
DR-DNS to mask bugs across remote servers. However, our
results indicate that performance is reduced only minimally
in practice, and correctness of operation is not affected.
While our results are promising, much more work remains

to be done. First, we plan to design a server-side voting
strategy, to protect the DNS root from bogus queries [27].
Also, we plan to investigate whether porting our Java-based
implementation to C++ will speed request processing fur-
ther. We are also currently in the process of deploying our
system for use within the campus network of a large uni-
versity, to investigate practical issues in a live operational
network. Finally, we plan to extend our study to include
many other protocols to investigate how diversity changes
among protocols. This helps us to generalize our method
for other protocols.

[1] Akamai. http://www.akamai.com.

[2] Alexa. http://www.alexa.com.

[3] CAIDA. http://www.caida.org/data/.

[4] DNS-OARC. Domain name system operations, analysis,
and research center. http://www.dns-oarc.net.

[5] fpdns - DNS fingerprinting tool.
http://code.google.com/p/fpdns.

[6] Insecure org. The nmap tool.
http://www.insecure.org/nmap.

[7] Securityfocus: Bugtraq mailing list.
http://www.securityfocus.com/ vulnerabilities.

[8] Root nameserver (Wikipedia article).
http://en.wikipedia.org/wiki/Root_nameserver.

[9] Bent, L., and Voelker, G. Whole page performance. In
The 7th International Web Caching Workshop (WCW)
(August 2002).

[10] Berger, E., and Zorn, B. Diehard: Probabilistic memory
safety for unsafe languages. In Programming Languages
Design and Implementation (June 2006).

[11] Brownlee, N., kc claffy, and Nemeth, E. DNS
measurements at a root server. In IEEE GLOBECOM
(November 2001).

[12] Castro, M., and Liskov, B. Practical byzantine fault
tolerance. In OSDI (February 1999).

[13] Chun, B.-G., Maniatis, P., and Shenker, S. Diverse
replication for single-machine byzantine-fault tolerance. In
USENIX ATC (June 2008).

[14] Forrest, S., Hofmeyr, S. A., Somayaji, A., and

Longstaff, T. A. A sense of self for unix processes. In
IEEE Symposium on Security and Privacy (1996),
pp. 120–128.

[15] Gummadi, K. P., Saroiu, S., and Gribble, S. D. King:
Estimating latency between arbitrary Internet end hosts. In
SIGCOMM Internet Measurement Workshop (2002).

[16] Gupta, D., Lee, S., Vrable, M., Savage, S., Snoeren,

A., Vahdat, A., Varghese, G., and Voelker, G.

Difference engine: Harnessing memory redundancy in
virtual machines. In OSDI (December 2008).

[17] Jung, J., Sit, E., Balakrishnan, H., and Morris, R.

DNS performance and the effectiveness of caching. In ACM
SIGCOMM (October 2002).

[18] Junqueira, F., Bhagwan, R., Hevia, A., Marzullo, K.,

and Voelker, G. Surviving Internet catastrophes. In
USENIX ATC (April 2005).

[19] Keller, E., Yu, M., Caesar, M., and Rexford, J.

Virtually eliminating router bugs. In CoNEXT (December
2009).

[20] Markopoulou, A., Iannaccone, G., Bhattacharyya, S.,

Chuah, C.-N., and Diot, C. Characterization of failures in
an IP backbone. In IEEE INFOCOM (March 2004).

[21] O’Donnell, A. J., and Sethu, H. On achieving software
diversity for improved network security using distributed
coloring algorithms. In CCS ’04: Proceedings of the 11th
ACM conference on Computer and communications
security (New York, NY, USA, 2004), ACM, pp. 121–131.

[22] Pappas, V., Faltstrom, P., Massey, D., and Zhang, L.

Distributed DNS troubleshooting. In ACM SIGCOMM
Workshop on Network Troubleshooting (August 2004).

[23] Park, K., Pai, V. S., Peterson, L., and Wang, Z.

CoDNS: Improving DNS performance and reliability via
cooperative lookups. In OSDI (December 2004).

[24] Ramasubramanian, V., and Sirer, E. G. The design and
implementation of a next generation name service for the
Internet. In ACM SIGCOMM (August 2004).

[25] Ramasubramanian, V., and Sirer, E. G. Perils of
transitive trust in the domain name system. In Internet
Measurement Conference (October 2005).

[26] Su, A.-J., Choffnes, D. R., Kuzmanovic, A., and án

E. Bustamante, F. Drafting behind Akamai
(Travelocity-based detouring). In ACM SIGCOMM (2006).

[27] Wessels, D., and Fomenkov, M. Wow, that’s a lot of
packets. In Passive and Active Measurement (April 2003).

[28] Yumerefendi, A., Mickle, B., and Cox, L. Tightlip:
Keeping applications from spilling the beans. In NSDI
(April 2007).

[29] Zhang, Y., Vin, H., Alvisi, L., Lee, W., and Dao, S. K.

Heterogeneous networking: A new survivability paradigm.
In NSPW ’01: Proceedings of the 2001 workshop on New
security paradigms (New York, NY, USA, 2001), ACM,
pp. 33–39.

[30] Zhou, Y., Marinov, D., Sanders, W., Zilles, C.,

d’Amorim, M., Lauterburg, S., and Lefever, R. Delta
execution for software reliability. In Hot Topics in System
Dependability (June 2007).


